- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0002000000000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Balamurugan, Darshini (1)
-
Betthauser, Joseph L. (1)
-
Brown, Alisa (1)
-
Iskarous, Mark (1)
-
Iskarous, Mark M. (1)
-
Kumar, Deepesh (1)
-
Nakagawa, Andrei (1)
-
Nguyen, Harrison (1)
-
Nguyen, Harrison H. (1)
-
Osborn, Luke E. (1)
-
Sankar, Sriramana (1)
-
Simcox, Talya (1)
-
Thakor, Nitish (1)
-
Thakor, Nitish V. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
- Filter by Editor
-
-
null (2)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
null (Ed.)Soft robotic fingers provide enhanced flexibility and dexterity when interacting with the environment. The capability of soft fingers can be further improved by integrating them with tactile sensors to discriminate various textured surfaces. In this work, a flexible 3x3 fabric-based tactile sensor array was integrated with a soft, biomimetic finger for a texture discrimination task. The finger palpated seven different textured plates and the corresponding tactile response was converted into neuromorphic spiking patterns, mimicking the firing pattern of mechanoreceptors in the skin. Spike-based feature metrics were used to classify different textures using the support vector machine (SVM) classifier. The sensor was able to achieve an accuracy of 99.21% when two features, mean spike rate and average inter-spike interval, from each taxel were used as inputs into the classifier. The experiment showed that an inexpensive, soft, biomimetic finger combined with the flexible tactile sensor array can potentially help users perceive their environment better.more » « less
-
Iskarous, Mark M.; Nguyen, Harrison H.; Osborn, Luke E.; Betthauser, Joseph L.; Thakor, Nitish V. (, Proceedings of IEEE Biomedical Circuits and Systems)null (Ed.)In this work, we investigated the classification of texture by neuromorphic tactile encoding and an unsupervised learning method. Additionally, we developed an adaptive classification algorithm to detect and characterize the presence of new texture data. The neuromorphic tactile encoding of textures from a multilayer tactile sensor was based on the physical structure and afferent spike signaling of human glabrous skin mechanoreceptors. We explored different neuromorphic spike pattern metrics and dimensionality reduction techniques in order to maximize classification accuracy while improving computational efficiency. Using a dataset composed of 3 textures, we showed that unsupervised learning of the neuromorphic tactile encoding data had high classification accuracy (mean=86.46%, sd=5 .44%). Moreover, the adaptive classification algorithm was successful at determining that there were 3 underlying textures in the training dataset. In this work, tactile information is transformed into neuromorphic spiking activity that can be used as a stimulation pattern to elicit texture sensation for prosthesis users. Furthermore, we provide the basis for identifying new textures adaptively which can be used to actively modify stimulation patterns to improve texture discrimination for the user.more » « less
An official website of the United States government
